large language

Microsoft LogoPhi 3.5 Mini Instruct

A highly capable lightweight LLM from Microsoft

Model details

View repository

Example usage

Phi 3.5 uses the standard set of LLM parameters and has optional streaming output.

Input
1import requests
2import os
3
4# Replace the empty string with your model id below
5model_id = ""
6baseten_api_key = os.environ["BASETEN_API_KEY"]
7
8messages = [
9    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
10    {"role": "user", "content": "Who are you?"},
11]
12data = {
13    "messages": messages,
14    "stream": True,
15    "temperature": 0.5
16}
17
18# Call model endpoint
19res = requests.post(
20    f"https://model-{model_id}.api.baseten.co/production/predict",
21    headers={"Authorization": f"Api-Key {baseten_api_key}"},
22    json=data,
23    stream=True
24)
25
26# Print the generated tokens as they get streamed
27for content in res.iter_content():
28    print(content.decode("utf-8"), end="", flush=True)
JSON output
1[
2    "arrrg",
3    "me hearty",
4    "I",
5    "be",
6    "doing",
7    "..."
8]

large language models

See all
Kimi
Model API
LLM

Kimi K2 0905

0905 - K2
DeepSeek Logo
Model API
LLM

DeepSeek V3.1

V3.1 - B200
Qwen Logo
Model API
LLM

Qwen3 235B 2507

2507

Microsoft models

See all
Microsoft Logo
LLM

Phi 3.5 Mini Instruct

3.5 - 128k - vLLM - A10G
Microsoft Logo
LLM

Phi 3 Mini 128K Instruct

3 - 128k - T4

🔥 Trending models