large language
MiniMax M2.5
MiniMax M2.5 delivers strong performance for coding and agentic tasks. The model is built with agentic task completion speed in mind.
Model details
Example usage
MiniMax M2.5 is a 230B-parameter MoE model with 10B active parameters. It scores competitively across benchmarks for coding and agentic tool use.
Input
1from openai import OpenAI
2import os
3
4model_url = "" # Copy in from API pane in Baseten model dashboard
5
6client = OpenAI(
7 api_key=os.environ['BASETEN_API_KEY'],
8 base_url=model_url
9)
10
11# Chat completion
12response_chat = client.chat.completions.create(
13 model="",
14 messages=[
15 {"role": "user", "content": "Write FizzBuzz."}
16 ],
17 temperature=0.6,
18 max_tokens=100,
19)
20print(response_chat)JSON output
1{
2 "id": "143",
3 "choices": [
4 {
5 "finish_reason": "stop",
6 "index": 0,
7 "logprobs": null,
8 "message": {
9 "content": "[Model output here]",
10 "role": "assistant",
11 "audio": null,
12 "function_call": null,
13 "tool_calls": null
14 }
15 }
16 ],
17 "created": 1741224586,
18 "model": "",
19 "object": "chat.completion",
20 "service_tier": null,
21 "system_fingerprint": null,
22 "usage": {
23 "completion_tokens": 145,
24 "prompt_tokens": 38,
25 "total_tokens": 183,
26 "completion_tokens_details": null,
27 "prompt_tokens_details": null
28 }
29}Preview
